On a codimension two bifurcation for a class of second order ODEs

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Bifurcation Analysis of a Prey-Predator Coevolution Model

We show in this paper how numerical bifurcation analysis can be used to study the evolution of genetically transmitted phenotypic traits. For this, we consider the standard Rosenzweig-MacArthur prey-predator model and, following the so-called Adaptive Dynamics approach, we derive from it a second-order evolutionary model composed of two ODEs, one for the prey trait and one for the predator trai...

متن کامل

Homoclinic Bifurcation in an SIQR Model for Childhood Diseases

We consider a system of ODEs which describes the transmission dynamics of childhood diseases. A center manifold reduction at a bifurcation point has the normal form x$= y, y$=axy+bxy+O(4), indicating a bifurcation of codimension greater than two. A three-parameter unfolding of the normal form is studied to capture possible complex dynamics of the original system which is subjected to certain co...

متن کامل

Codimension-Two Bifurcations of Fixed Points in a Class of Discrete Prey-Predator Systems

The dynamic behaviour of a Lotka-Volterra system, described by a planar map, is analytically and numerically investigated. We derive analytical conditions for stability and bifurcation of the fixed points of the system and compute analytically the normal form coefficients for the codimension 1 bifurcation points flip and Neimark-Sacker , and so establish subor supercriticality of these bifurcat...

متن کامل

Instabilities induced by a weak breaking of a strong spatial resonance

Through multiple-scales and symmetry arguments we derive a model set of amplitude equations describing the interaction of two steady-state pattern-forming instabilities, in the case that the wavelengths of the instabilities are nearly in the ratio 1 : 2. In the case of exact 1 : 2 resonance the amplitude equations are ODEs; here they are PDEs. We discuss the stability of spatially-periodic solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999